VINYLIC CATIONS FROM SOLVOLYSIS. XVI. ¹ HIGH k_{CIS}/k_{TRANS} REACTIVITY RATIO IN THE SOLVOLYSIS OF a-BROMC-B-tert-BUTYL-p-METHOXYSTYRENES

Zvi Rappoport , Addy Pross and Yitzhak Apeloig

Department of Organic Chemistry , The Hebrew University, Jerusalem, Israel (Received in UK 9 April 1973; accepted for publication 19 April 1973)

The introduction of two A-substituents into a vinylic system has a relatively small effect on the rate of S_N^1 solvolysis,² while with A-monomethyl a-activated vinyl halides $k_{\underline{cis}}/k_{\underline{trans}}$ values of 8.3, ³ and <u>ca</u>. 9.5, ⁴ were found. The largest $k_{\underline{cis}}/k_{\underline{trans}}$ value observed to date is 49, which was observed for a B-p-methoxyphenyl substituent.⁵ These rate differences were attributed to rate enhancement of the <u>cis</u> isomer due to partial deconjugation of the activating group with the double bond, ^{3,5} or to a relief of steric interaction between the <u>cis</u> methyl and activating groups.⁴

In order to test this hypothesis further we have compared the solvolysis rates of <u>cis</u> and <u>trans</u> pairs of <u>p</u>-methoxy-a-bromostyrenes substituted with mono ß-tert-butyl group $[(I-c): \delta(CDCl_3) \quad 0.88 \ (Bu^{t}), 6.07 \ (:CH), \chi_{max}^{EtOH} 243 \ nm \ (\epsilon \ 11,000);$ $(I-t): \delta(CDCl_3) \quad 1.23 \ (Bu^{t}), 6.03 \ (:CH), \chi_{max}^{EtOH} 262 \ nm \ (\epsilon \ 12,600)], mono-ß-methyl$ $group (II-c and II-t)³ and mono-3-deuterium <math>[(III-c): \delta(CDCl_3) \quad 5.60;$ $(III-t): \delta(CDCl_3) \quad 5.94 \]$ in 50% EtOH containing NaOAc. The solvolysis products were the substituted acetophenones (IV) and acetylenes (V). Kate and product data are listed in the Table.

Our most significant result is the high k_{cis}/k_{trans} ratio of 1640 ($\Delta \Delta F^{\ddagger}$ [(I-c) - (I-t)] = -5.2 Kcal mol⁻¹) for the ß-tert-butyl derivatives which is almost completely due to the enhanced solvolytic reactivity of the <u>cis</u> isomer. This ratio is not due to a competing E2 elimination as established by the following : (a) The reaction rates of (I-c) and (I-t) are independent of the concentration of the NaOAc. (b) The reaction

$$An_{Br} = C = C = C = H \qquad An_{Br} = C = C = C = H \qquad AnCOCH_2R \qquad AnCBCR$$

$$R = Bu^{t} : (I-c) \qquad (I-t) \qquad (IV) \qquad (V)$$

$$R = Me : (II-c) \qquad (II-t)$$

$$R = D : (III-c) \qquad (III-t)$$

$$An = p - MeOC_6 H_{L} - P$$

rate of (I-c) is slightly enhanced , and that of (I-t) is moderately enhanced in the presence of the stronger base NaOH. A small contribution from an E2 route with NaOH for the trans isomer is possible. (c) The product composition from both isomers is reasonably close, and the ketone (IV, R=Bu^t), which is expected only from the S_N^1 reaction, was formed in >50% yield under conditions in which the acetylene (V, R = Bu^t) was stable to hydration. The higher percentage of acetylene with the stronger base has a precedent in a related system.⁶ (d) The isotope effect k_{B-H}/k_{B-D} of 1.10 for (I-c) is close to the value predicted for an S_N^1 solvolysis of the a-(p-methoxyphenyl)vinyl system,⁷ while the k_{B-H}/k_{B-D} of 1.26 for (I-t) is still in the range assigned for S_N^1 solvolyses.^{6,8} For comparison, the isotope effect $k_{(III-c)}/k_{(III-t)}$ which is based on the unchanged composition of a partially solvolysed 65 : 35 mixture of (III-c) to (III-t) after 48% reaction , is <u>ca</u>. 1. (e)The Grunwald-Winstein m value ⁹ of 0.83[±]0.03 at 30^o which was found for (I-c) in aqueous EtOH is in the range assigned for S_N^1 reactions. ^{9a,c}

The negligible effect of the <u>trans</u>-B-alkyl groups [relative reactivity : $D(1) \sim Me(0.81) \sim Bu^{t}(0.83)$] may result from a cancellation of a steric acceleration due to a relief of the ground state crowding by steric retardation by R to the expulsion of Br⁻. The telescopic increase in the $k_{\underline{cis}}/k_{\underline{trans}}$ ratios in the series $B-D(1) \leq B-Me(7.65) \leq B-An(49) \leq B-Bu^{t}(1640)$ substantiate the suggestion that the ratios are mainly determined by steric effects. Models show that while the distortion from planarity in the <u>trans</u> isomers is small , the a-aryl group of the <u>cis</u> isomers is twisted out of the plane of the double bond. The increased stemic interaction between the <u>cis-p</u>-methoxyphenyl and R groups for the bulkier R's results in increasing $\widetilde{W}(Ar) - \widetilde{W}(C=C)$ deconjugation , and consequently a rise in the ground state energy. Simultaneously , the transition state energy decreases by the increase in the $\widetilde{W}(Ar) - p(C^{+})$

Substrate ^a	Base	Concn., 10 ³ mol 1 ⁻¹	T, ^o C	10 ⁵ k ₁ ,s ⁻¹	Relative k _l (80°)	Products	
						(IV)	(V)
I-c	NaOAc	13.9	30	125=0.3		75 ^b	25 ^b
	NaOAc	51	30	122=0.7			
	NaOAc	146	30	140-1.0			
	NaOAc	26	80	9200 ^C	1362 ^C		
	NaOH	8.3	30	129-1.1		57 ^d	43 ^d
	NaOH	20.6	30	152-1.1			
I-t	NaOAc	26	80 .	5.61±0.0	8 0.83	81 [●]	19 ^e
	NaOAc	103	80	5.85-0.0	9		
	NaOH	51	80	8.26-0.1	3		
II-c	NaOAc	26	80	42.0+0.18	6.2 ^f	68 ^g	16 ⁸
II-t	NaOAc	26	80	5.49 [±] 0.1	2 0.81 ^f	83 ^h	17 ^h
III-c	NaOAc	26	80	6.80-0.1	1 1.0	67 ⁱ	11 ⁱ
III-t	NaOAc	26	80	6.80±0.1	1 1.0 ^j		

Table. Solvolysis of AnC(Br)=CHR in 50% EtOH.

^a $[AnC(Br)=CHR] = 1.5-1.8 \times 10^{-4} \text{ mol } 1^{-1} \text{ for (I-c) and } 0.009-0.021 \text{ mol } 1^{-1} \text{ for the}$ other compounds. ^b With 0.028 mol 1^{-1} of NaOAc. ^c Extrapolated from data at lower temperatures: $\Delta H^{+} = 17.6 \text{ Kcal mol}^{-1}$; $\Delta S^{+} = -10 \text{ cal } \text{K}^{-1}\text{mol}^{-1}$. ^d With 0.051 mol 1^{-1} of NaOH. ^e At 70^o. ^f k₁(II-c)/k₁(AnC(Br)=CH₂)=6.7 and k₁(II-t)/k₁(AnC(Br)=CH₂) = 0.83 in 80% EtOH at 80^o with 0.1 H Et₃N. ³ ^g After 5 half-lives. Also formed are 12% of (II-t) and 4% of the vinyl ether. ^h After 7 half-lives. ⁱ At 50% reaction. Also formed are 11% of the vinyl ether and 11% of the vinyl acetate. After 30 half-lives the products are 45% of (IV), 36% of AnCOCH₂D, 16% of (V) and 3% of the vinyl acetate. ^j Within the accuracy of the nmr determination.

conjugation. Attempts to evaluate the difference in ground state energy between (I-c) and (I-t) by their thermal equilibration have so far failed due to the formation of (V, $R = Bu^{t}$) and HBr.

we thank the Volkswagen Foundation for support and the Hebrew University for a postdoctoral fellowship to n.P.

REFERENCES

- 1. Part XV. Z. Rappoport and Y. Houminer, J.C.S., Perkin II, in press.
- 2. Z. Rappoport and A. Gal, J.Org. Chem., 37, 1174 (1972).
- 3. C.A. Grob and R. Nussbaumer, Helv.Chim.Acta, 54, 2528 (1971).
- 4. D.R. Kelsey and R.G. Bergman, <u>J.Amer.Chem.Soc.</u>, <u>92</u>, 228 (1970); <u>93</u>, 1941 (1971).
- Z. Rappoport and M. Atidia, <u>Tetrahedron Letters</u>, 4085 (1970); <u>J.C.S., Perkin II</u>, 2316 (1972).
- 6. C.A. Grob and H.R. Pfaendler, Helv, Chim. Acta, 54, 2060 (1971).
- 7. P.J. Stang, Prog. Phys. Org. Chem., 10, 276 (1973).
- P.M. Laughton and R.E. Robertson, in "Solute-Solvent Interactions", J.F. Coetzee and C.D. Ritchie Eds., Marcel Dekker, New York, 1969, p. 429.
- 9. (a) E. Grunwald and S. Winstein, J.Amer.Chem.Soc., 70, 846 (1948);
 - (b) S. Winstein, E. Grunwald and H.W. Jones, *ibid.*, 73, 2700 (1951);
 - (c) K.B. Wiberg, "Physical Organic Chemistry", John Wiley and Sone, New York, 1964, pp. 417-421.